#### **U. S. CITRUS PRODUCTION**

For many years Florida has been the nation's dominant state in production of citrus. During the last decade about 70 percent of all U.S. citrus was grown in Florida.

Production of U.S. Citrus by States

| Season    | FL 1            | CA              | TX              | AZ              | U.S. total      |
|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|
|           | (1,000<br>tons) | (1,000<br>tons) | (1,000<br>tons) | (1,000<br>tons) | (1,000<br>tons) |
| 2001-2002 | 12,824          | 2,907           | 310             | 153             | 16,194          |
| 2002-2003 | 11,206          | 3,530           | 292             | 152             | 15,180          |
| 2003-2004 | 13,045          | 2,855           | 298             | 162             | 16,360          |
| 2004-2005 | 7,597           | 3,511           | 339             | 127             | 11,574          |
| 2005-2006 | 7,832           | 3,460           | 277             | 185             | 11,745          |
| 2006-2007 | 7,236           | 2,743           | 368             | 120             | 10,467          |
| 2007-2008 | 9,119           | 3,312           | 317             | 90              | 12,838          |
| 2008-2009 | 8,470           | 2,954           | 282             | 133             | 11,839          |
| 2009-2010 | 7,132           | 3,477           | 294             | 97              | 11,000          |
| 2010-2011 | 7,427           | 3,860           | 335             | 112             | 11,734          |

<sup>&</sup>lt;sup>1</sup> Does not include lemons. Limes and K-Early Citrus Fruit included through 2001-02.

#### FLORIDA'S OBJECTIVE CITRUS FORECAST

Advance knowledge of crop size permits early decisions for planning operations, marketing, and policy making, which are especially important to a crop which is harvested over several months and sold year round. The U.S. Department of Agriculture first made forecasts of Florida citrus production in 1918, based on survey opinions of crop observers and statisticians. The need for greater accuracy in these forecasts intensified as Florida's production increased. Florida's participation in world markets underlines the need for comprehensive and accurate information to successfully compete in these markets.

The interest in a statistically accurate forecast has led to the current system based on objective data including an early season limb count survey to establish actual fruit set, supplemented with monthly in-season measurements of fruit size and observations of fruit droppage. This system of the forecasts and estimates is possible through an industry-supported per-box assessment on all Florida production. The resulting trust fund is used to collect much of the objective survey data for the USDA forecast and estimates.

Florida's Citrus Production by Seasons

| Season    | Oranges  | Grapefruit | Others   | Total    |
|-----------|----------|------------|----------|----------|
|           | (million | (million   | (million | (million |
|           | boxes)   | boxes)     | boxes)   | boxes)   |
| 2001-2002 | 230.0    | 46.7       | 10.6     | 287.3    |
| 2002-2003 | 203.0    | 38.7       | 9.3      | 251.0    |
| 2003-2004 | 242.0    | 40.9       | 8.9      | 291.8    |
| 2004-2005 | 149.8    | 12.8       | 6.7      | 169.3    |
| 2005-2006 | 147.7    | 19.3       | 7.6      | 174.6    |
| 2006-2007 | 129.0    | 27.2       | 5.9      | 162.1    |
| 2007-2008 | 170.2    | 26.6       | 7.0      | 203.8    |
| 2008-2009 | 162.5    | 21.7       | 5.0      | 189.2    |
| 2009-2010 | 133.7    | 20.3       | 5.4      | 159.4    |
| 2010-2011 | 140.3    | 19.8       | 5.8      | 165.9    |

#### **COMMERCIAL TREE INVENTORY**

The commercial tree inventory, done every year, provides a complete record of trees and acreage by counties for each citrus type and variety, by year planted. In addition to its use for decisions on planting and future planning, the inventory provides a sampling frame for the objective forecasting surveys—the statistical sample of groves is drawn from the inventory records. Thus, resulting estimates from the same survey data may be used with statistical confidence obtainable only with a probability sample.

The inventory has previously used aerial photographs of about 14,000 square miles of the Florida peninsula covering virtually all citrus growing areas. Photos were taken at 15,000 feet on black and white panchromatic film. The resulting exposures with a scale of 1:30,000 cover a three-mile wide swath on the ground, and the same flight lines were followed for each inventory. The first such photos were taken in late 1965 and used for the January 1966 inventory. For that inventory, photo enlargements were obtained and every block of citrus was identified on the ground and mapped onto an enlargement. The resulting record of each planting has been updated, amended, and added to at every inventory since then, through the use of photo comparison and subsequent survey work in the groves.

Now, remotely sensed data allows for rapid replacement and maintenance of background images. Grove boundaries are digitized and saved in a geodatabase in our geographic information system (GIS). The software provides additional tools to enhance comparative photo interpretation for grove change detection. Field checking of new and altered acreage follows. Changes detected on images and in field observations are used to update the previous inventory. This technology provides current tree inventory data for evaluating Florida's potential citrus production in a shorter period of time and at less cost than by ground survey methods alone.

Florida Commercial Citrus Acreage as of January

| Survey<br>year | Oranges | Grapefruit | Others  | Total   |
|----------------|---------|------------|---------|---------|
|                | (acres) | (acres)    | (acres) | (acres) |
| 1988           | 536,737 | 119,606    | 41,586  | 697,929 |
| 1990           | 564,809 | 125,300    | 42,658  | 732,767 |
| 1992           | 608,636 | 135,166    | 47,488  | 791,290 |
| 1994           | 653,370 | 146,915    | 53,457  | 853,742 |
| 1996           | 656,598 | 144,416    | 56,673  | 857,687 |
| 1998           | 658,390 | 132,817    | 54,053  | 845,260 |
| 2000           | 665,529 | 118,145    | 48,601  | 832,275 |
| 2002           | 648,806 | 105,488    | 43,009  | 797,303 |
| 2004           | 622,821 | 89,048     | 36,686  | 748,555 |
| 2006           | 529,241 | 63,419     | 28,713  | 621,373 |
| 2008           | 496,518 | 56,881     | 23,178  | 576,577 |
| 2009           | 492,529 | 53,863     | 22,422  | 568,814 |
| 2010           | 483,418 | 50,189     | 20,430  | 554,037 |
| 2011           | 473,086 | 48,990     | 19,252  | 541,328 |

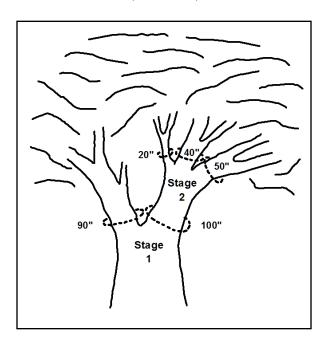
#### **OBJECTIVE SURVEY METHODS**

The annual citrus crop production forecast is based on estimates and projections from actual counts and measurements, avoiding observations based on opinion or judgment. These objective procedures are simple in concept but complex in planning, management for efficiency, and quality assurance.

The four basic parameters used in the forecast are (1) number of bearing trees, (2) number of fruit per tree, (3) fruit size, and (4) fruit loss from droppage. The first two of these parameters have the greatest influence on the forecast. The general model incorporates the estimated total fruit (bearing trees times average fruit per tree), divided by the number of fruit projected to make a standard box at harvest (using the fruit size survey), reduced for droppage (the fraction of fruit counted at survey time but lost to droppage before it is harvested).

The sample design used to obtain each parameter stratifies the State's citrus belt into five nearly homogeneous areas and the bearing trees into five age groups. Sample groves for surveying are selected from the citrus tree inventory using probability sampling procedures. The samples are mapped on copies of aerial photo enlargements and indexed for reference.

Developed during the mid-1950's, the Limb Count survey conducted from mid-to-late summer has become the basic tool for estimating the average number of fruit on Florida's citrus trees. Annually as many as 3,200 sample groves are drawn from the tree inventory data by type, to be representative of their population. Survey crews are then dispatched to these groves. At each sample site, two trees are chosen at random for sampling.


A sample limb representing approximately 10 percent of the bearing surface of each tree is randomly selected based on the cross sectional area measurements of limbs, starting at the trunk or scaffold and moving in successive stages up the tree. Fruit is then counted on this sample limb, with random recounts by supervisors to maintain quality control. The procedure utilizes the correlation between limb size and the fruiting ability of that limb—thus it is most efficient to sample more trees and count only a small part of each tree.

Fruit counts are then expanded by the reciprocal of the probability of selection to a total tree basis. This design results in the reliable estimates of average fruit per tree.

#### SIZE AND GROWTH OF FRUIT

Another important parameter in the forecast is the expected fruit size. Fruit size measurement surveys are conducted monthly from August to harvest on two trees in each of about 1,800 sample groves.

Circumference calipers, which have proven to be the most sensitive tool to measure subtle changes in size, are used for this survey. Fruit size is projected to harvest by use of growth charts, historical relationships of current survey data to final results, and other relationships to detect similar-year growth. Fruit circumference is converted to number of fruit per box to report the forecast in boxes.



#### FRUIT LOSS FROM DROPPAGE

Fruit droppage is the final factor which must be considered to develop a reliable forecast of production. This requires monthly observations of fruit loss from many sample branches. These sample branches are tagged and the fruit is counted at the same time as the Limb Count survey. Then at monthly intervals, the same branches are recounted. Cumulative fruit loss for the season and historical data from previous seasons are used to project fruit loss to harvest time.

The resulting October forecast is subject to change in later months due to weather conditions that affect fruit sizing and droppage rates.

#### **CITRUS MATURITY AND YIELD SURVEY**

Another feature of the Florida citrus forecasting program is the projected yield of frozen concentrated orange juice (FCOJ) for oranges, expressed in gallons of concentrate per box. This projection is important for fruit used in processing which is a major portion of the orange production.

Sample groves and trees remain relatively constant from year to year in order to assure the greatest continuity of data. Fruit samples are collected monthly throughout the season and tested for acid, solids, and unfinished juice. The projection of FCOJ yield per 90 pound box equivalent is based on a statistical regression of these unadjusted maturity and yield test results to actual yields at processing plants during past seasons. The level of maturity, weather, and harvest patterns all play a substantial part in the final result.

Prior to freezes in the mid-1980's, the Florida citrus industry annually produced approximately 90 percent of the nation's supply of frozen concentrated orange juice. In recent years, more fruit has been going to fresh squeezed products.

Florida's Frozen Concentrated Orange Juice (FCOJ)

| Season    | Boxes used    | Average yield <sup>1</sup> | Product         |  |  |
|-----------|---------------|----------------------------|-----------------|--|--|
|           | (1,000 boxes) |                            | (1,000 gallons) |  |  |
| 2001-2002 | 135,975       | 1.58                       | 215,057         |  |  |
| 2002-2003 | 102,073       | 1.54                       | 156,845         |  |  |
| 2003-2004 | 139,727       | 1.56                       | 218,296         |  |  |
| 2004-2005 | 54,322        | 1.58                       | 85,998          |  |  |
| 2005-2006 | 51,873        | 1.63                       | 84,600          |  |  |
| 2006-2007 | 47,996        | 1.65                       | 79,054          |  |  |
| 2007-2008 | 80,817        | 1.67                       | 135,196         |  |  |
| 2008-2009 | 72,543        | 1.66                       | 120,790         |  |  |
| 2009-2010 | 52,737        | 1.56                       | 82,252          |  |  |
| 2010-2011 | 51,758        | 1.59                       | 82,092          |  |  |

<sup>&</sup>lt;sup>1</sup> Gallons per box at 42° Brix.

#### **OTHER SURVEYS AND STATISTICS**

From the objective surveys, estimates of production by counties and boxes of fruit per tree by types and ages are reported in the preliminary Production and Value release. It is followed by the annual Citrus Summary. From the annual tree inventory, tree and acreage changes are shown by fruit types, counties, and year set in the preliminary Tree Inventory release and the Commercial Citrus Inventory.

A monthly route survey is conducted during the season to estimate the percent of fruit harvested to date. Additional crop statistics are provided as the need arises. These include surveys following such disasters as hurricanes and freezes.

#### **VALUE OF FLORIDA'S CITRUS CROP**

Florida citrus production represents about one fifth of the total value of farm production in the State. Farm production value is the product of total units sold and the average price received by the producer.

Average prices received are estimated monthly for sales for fresh use and for processing, based on current sales information. These estimates are combined with sales volume to calculate a season average price. The price estimates, especially for processing, are subject to revision after the closing of cooperative pools, about one year later, since about one half of the orange crop is sold through cooperative and participation plans.

Price estimates are made and published for a 90-pound box equivalent of oranges and 85 pounds of grapefruit. The price received by growers for fruit processed is for pounds of sugar solids delivered to the processor. In recent years, over 95 percent of oranges and nearly 58 percent of grapefruit were processed.

Prices are reported at two levels: The on-tree value of sales, which excludes the cost per box for picking and hauling the fruit to the packinghouse, and the value per box delivered to the packinghouse.

**On-Tree Value of Florida's Citrus** 

| On-Tree value of Florida's Offices |           |            |          |           |  |
|------------------------------------|-----------|------------|----------|-----------|--|
| Season                             | Oranges   | Grapefruit | Others   | Total     |  |
|                                    | (1,000    | (1,000     | (1,000   | (1,000    |  |
|                                    | dollars)  | dollars)   | dollars) | dollars)  |  |
| 1991-1992                          | 828,749   | 280,629    | 99,566   | 1,208,944 |  |
| 1992-1993                          | 649,713   | 146,432    | 59,667   | 855,812   |  |
| 1993-1994                          | 713,312   | 167,211    | 59,331   | 939,854   |  |
| 1994-1995                          | 767,924   | 116,602    | 63,647   | 948,173   |  |
| 1995-1996                          | 895,465   | 101,140    | 79,212   | 1,075,817 |  |
| 1996-1997                          | 801,344   | 88,009     | 71,143   | 960,496   |  |
| 1997-1998                          | 900,815   | 63,000     | 59,568   | 1,023,383 |  |
| 1998-1999                          | 900,044   | 108,411    | 88,798   | 1,097,253 |  |
| 1999-2000                          | 856,052   | 188,332    | 64,139   | 1,108,523 |  |
| 2000-2001                          | 716,055   | 100,869    | 45,107   | 862,031   |  |
| 2001-2002                          | 797,602   | 107,653    | 61,548   | 966,803   |  |
| 2002-2003                          | 643,804   | 94,518     | 49,056   | 787,378   |  |
| 2003-2004                          | 699,927   | 136,295    | 55,278   | 891,500   |  |
| 2004-2005                          | 522,892   | 172,365    | 58,912   | 754,169   |  |
| 2005-2006                          | 813,332   | 149,655    | 61,633   | 1,024,620 |  |
| 2006-2007                          | 1,310,382 | 120,280    | 68,450   | 1,499,112 |  |
| 2007-2008                          | 1,125,348 | 117,507    | 41,139   | 1,283,994 |  |
| 2008-2009                          | 937,069   | 82,696     | 26,970   | 1,046,735 |  |
| 2009-2010                          | 918,872   | 152,035    | 47,436   | 1,118,343 |  |
| 2010-2011 <sup>1</sup>             | 957,942   | 131,458    | 55,395   | 1,144,795 |  |

<sup>&</sup>lt;sup>1</sup> Preliminary.

#### **FORECAST ACCURACY**

Each forecast is subject to inherent sampling errors, but during recent seasons without freezes or hurricanes, the average deviation from the October forecast to the final pickout has been under four percent for oranges and under five percent for grapefruit.

**October Forecast Versus Final Production** 

| Season                 | Oranges  |          | Grapefruit |          |
|------------------------|----------|----------|------------|----------|
| Season                 | October  | Final    | October    | Final    |
|                        | (million | (million | (million   | (million |
|                        | boxes)   | boxes)   | boxes)     | boxes)   |
| 1999-2000              | 211.0    | 233.0    | 50.0       | 53.4     |
| 2000-2001              | 240.0    | 223.3    | 50.0       | 46.0     |
| 2001-2002              | 231.0    | 230.0    | 48.0       | 46.7     |
| 2002-2003              | 197.0    | 203.0    | 42.0       | 38.7     |
| 2003-2004              | 252.0    | 242.0    | 42.0       | 40.9     |
| 2004-2005 <sup>1</sup> | 176.0    | 149.6    | 15.0       | 12.8     |
| 2005-2006 <sup>1</sup> | 190.0    | 147.7    | 24.0       | 19.3     |
| 2006-2007              | 135.0    | 129.0    | 26.0       | 27.2     |
| 2007-2008              | 168.0    | 170.2    | 25.0       | 26.6     |
| 2008-2009              | 166.0    | 162.5    | 23.0       | 21.7     |
| 2009-2010              | 136.0    | 133.7    | 19.8       | 20.3     |
| 2010-2011              | 146.0    | 140.3    | 20.0       | 19.8     |

<sup>&</sup>lt;sup>1</sup> Hurricane-affected season.

#### **FORECAST SECURITY**

The citrus crop forecast is released by the USDA's National Agricultural Statistics Service in Washington, D.C., on or before the 12<sup>th</sup> day of the month, reflecting conditions as of the first of that month. The report is always released at 8:30 a.m., before the opening of business on the Futures Market. This is done to permit all concerned an equal opportunity to have access and review the statistics before trading resumes.

To insure absolute security of the information, all orange survey data is summarized in restricted areas and ultimately assembled for release in the lock-up area of the National Agricultural Statistics Service. An oath of loyalty is administered to all employees of the Department and they are subject to punishment for early release of information or for reporting erroneous data.

USDA, NASS, Florida Field Office

Mailing address: P. O. Box 945200

Maitland, Florida 32794-5200

Physical address: 2290 Lucien Way, Suite 300

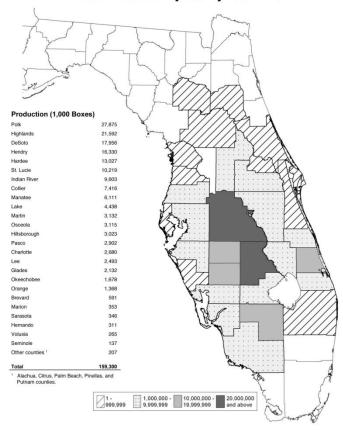
Maitland, Florida 32751

Web address: http://www.nass.usda.gov/fl

Telephone: (407) 648-6013 Facsimile: (407) 648-6029

email: nass-fl@nass.usda.gov

Printed October 2011


### **FORECASTING**

## FLORIDA'S

#### **CITRUS**

## **PRODUCTION**

#### Citrus Production by County 2009-2010



# FLORIDA'S CITRUS CROP STATISTICS

The USDA's National Agricultural Statistics Service Florida Field Office works cooperatively with the Florida Department of Agriculture and Consumer Services and the University of Florida. The office is responsible for gathering and reporting Florida's agricultural statistics. Major crop and livestock statistics are reported with various statistical methods used to prepare the information released. This brochure explains the process used to forecast citrus crop production.